Sherlock Holmes as Cyborg and the Future of Retail

Lately, I’ve been enjoying reruns of the relatively new BBC series Sherlock, starring Benedict Cumberbatch, which imagines Arthur Conan Doyle’s famous detective in our 21st century world. The thing I really enjoy about the show is that it’s the first time I can recall that anyone has managed to make Sherlock Holmes funny without at the same time undermining the whole premise of a character whose purely logical style of thinking make him seem more a robot than a human being.

Part of the genius of the series is that the characters around Sherlock, especially Watson, are constantly trying to press upon him the fact that he is indeed human, kind of in the same way Bones is the emotional foil to Spock.

Sherlock uses an ingenious device to display Holmes’ infamous powers of deduction. When Sherlock is focusing his attention on a character words will float around them that display some relevant piece of information, say, the price of a character’s shoes, what kind of razor they used, or what they did the night before. The first couple of times I watched the series I had the eerie feeling that I’d seen this device before, but I couldn’t put my finger on it. And then it hit me, I’d seen it in a piece of design fiction called Sight that I’d written about a while back.

In Sight the male character is equipped with contact lenses that act as an advanced form of Google Glasses. This allows him to surreptitiously access information such as the social profile, and real-time emotional reactions of a woman he is out on a date with. The whole thing is down right creepy and appears to end with the woman’s rape and perhaps even her murder- the viewer is left to guess the outcome.

It’s not only the style of heads-up display containing intimate personal detail that put me in mind of the BBC’s Sherlock where the hero has these types of cyborg capabilities not on account of technology, but built into his very nature, it’s also the idea that there is this sea of potentially useful information just sitting there on someone’s face.

In the future it seems anyone who wants to will have Sherlock Holmes types of deductive powers, but that got me thinking who in the world would want to? I mean,it’s not like we’re not already bombarded with streams of useless data we are not able to process. Access to Sight level amounts of information about everyone we came into contact with and didn’t personally know, would squeeze our mental bandwidth down to dial-up speed.

I think the not-knowing part is important because you’d really only want a narrow stream of new information about a person you were already well acquainted with. Something like the information people now put on their FaceBook wall. You know, it’s so and so’s niece’s damned birthday and your monster-truck driving, barrel-necked cousin Tony just bagged something that looks like a mastodon on his hunting trip to North Dakota.

Certainly the ability to scan a person like a QR code would come in handy for police or spooks, and will likely be used by even more sophisticated criminals and creeps than the ones we have now. These groups work up in a very narrow gap with people they don’t know all the time.  There’s one other large group other than some medical professionals I can think of that works in this same narrow gap, that, on a regular basis, it is of benefit to and not inefficient to have in front of them the maximum amount of information available about the individual standing in front of them- salespeople.

Think about a high end retailer such as a jeweler, or perhaps more commonly an electronics outlet such as the Apple Store. It would certainly be of benefit to a salesperson to be able to instantly gather details about what an unknown person who walked in the store did for a living, their marital status, number of family members, and even their criminal record. There is also the matter of making a sale itself, and here thekinds of feedback data seen in Sight would come in handy.  Such feedback data is already possible across multiple technologies and only need’s to be combined. All one would need is a name, or perhaps even just a picture.

Imagine it this way: you walk into a store to potentially purchase a high-end product. The salesperson wears the equivalent of Google Glasses. They ask for your name and you give it to them. The salesperson is able to, without you ever knowing, gather up everything publically available about you on the web, after which they can buy your profile, purchasing, and browser history, again surreptitiously, perhaps by just blinking, from a big data company like Axicon and tailor their pitch to you. This is similar to what happens now when you are solicited through targeted ads while browsing the Internet, and perhaps the real future of such targeted advertising, as the success of FaceBook in mobile shows, lies in the physical rather than the virtual world.

In the Apple Store example, the salesperson would be able to know what products you owned and your use patterns, perhaps getting some of this information directly from your phone, and therefore be able to pitch to you the accessories and upgrades most likely to make a sale.

The next layer, reading your emotional reactions, is a little tricker, but again much of the technology already exists, or is in development. We’ve all heard those annoying messages when dealing with customer service over the phone that bleats at us “This call may be monitored….”. One might think this recording is done as insurance against lawsuits, and that is certainly one of the reasons. But, as Christopher Steiner in his Automate This, another major reason for these recording is to refine algorithms thathelp customer service representatives filter customers by emotional type and interact with customers according to such types.

These types of algorithms will only get better, and work on social robots used largely for medical care and emotional therapy is moving the rapid fire algorithmic gauging and response to human emotions from the audio to the visual realms.

If this use of Sherlock Holmes type power by those with a power or wealth asymmetry over you makes you uncomfortable, I’m right there with you. But when it gets you down you might try laughing about it. One thing we need to keep in mind both for sanity’s sake, not to mention so that we can have a more accurate gauge of how people in the future might preserve elements of their humanity in the face of technological capacities we today find new and often alien, is that it would have to be a very dark future indeed for there not to be a lot to laugh at in it.

Writers of utopia can be deliberately funny, Thomas More’s Utopia is meant to crack the reader up. Dystopian visions whether of the fictional or nonfictional sort, avoid humor for a reason. The whole point of their work is to get us to avoid such a future in the first place, not, as is the role of humor, to make almost unlivable situations more human, or to undermine power by making it ridiculous, to point out the emperor has no clothes, and defeat the devil by laughing at him. Dystopias are a laughless affair.

Just like in Sherlock it’s a tough trick to pull off, but human beings of the future, as long as there are actually still human beings, will still find the world funny. In terms of technology used as a tool of power, the powerless, as they always have, are likely to get their kicks subverting it, and twisting it to the point of breaking underlying assumptions.

Laughs will be had at epic fails and the sheer ridiculousness of control freaks trying to squish an unruly, messy world into frozen and pristine lines of code.  Life in the future will still sometimes feel like a sitcom, even if the sitcom’s of that time are pumped in directly to our brains through nano-scale neural implants.

Utopias and dystopias emerging from technology are two-sides of a crystal-clear future, which, because of their very clarity, cannot come to pass. What makes ethical judgement of the technologies discussed above, indeed all technology, difficult is their damned ambiguity, an ambiguity that largely stems from dual use.

Persons suffering from autism really would benefit from a technology that allowed them to accurately gauge and guide response to the emotional cues of others. An EMT really would be empowered if at the scene of a bad accident they could instantly access such a stream of information all from getting your name or even just looking at your face, especially when such data contains relevant medical information, as would a person working in child protective services and myriad forms of counseling.

Without doubt, such technology will be used by stalkers and creeps, but it might also be used to help restore trust and emotional rapport to a couple headed for divorce.

I think Sherry Turkle is essentially right, that the more we turn to technology to meet our emotional needs, the less we turn to each other. Still, the real issue isn’t technology itself, but how we are choosing to use it, and that’s because technology by itself is devoid of any morality and meaning, even if it is a cliché to say it. Using technology to create a more emotionally supportive and connected world is a good thing.

As Louise Aronson said in a recent article for The New York Times on social robots to care for the elderly and disabled:

But the biggest argument for robot caregivers is that we need them. We do not have anywhere near enough human caregivers for the growing number of older Americans. Robots could help solve this work-force crisis by strategically supplementing human care. Equally important, robots could decrease high rates of neglect and abuse of older adults by assisting overwhelmed human caregivers and replacing those who are guilty of intentional negligence or mistreatment.

Our sisyphean condition is that any gain in our capacity to do good seems to also increase our capacity to do ill. The key I think lies in finding ways to contain and control the ill effects. I wouldn’t mind our versions of Sherlock Holmes using the cyborg like powers we are creating, but I think we should be more than a little careful they don’t also fall into the hands of our world’s far too many Moriarties, though no matter how devilish these characters might be, we will still be able to mock them as buffoons.

Plato and the Physicist: A Multicosmic Love Story

Life as a Braid of Space Time

 

So I finally got around to reading Max Tegmark’s book Our Mathematical Universe, and while the book answered the question that had led me to read it, namely, how one might reconcile Plato’s idea of eternal mathematical forms with the concept of multiple universes, it also threw up a whole host of new questions. This beautifully written and thought provoking book made me wonder about the future of science and the scientific method, the limits to human knowledge, and the scientific, philosophical and moral meaning of various ideas of the multiverse.

I should start though with my initial question of how Tegmark manages to fit something very much like Plato’s Theory of the Forms into the seemingly chaotic landscape of multiverse theories. If you remember back to your college philosophy classes, you might recall something of Plato’s idea of forms, which in its very basics boils down to this: Plato thought there was a world of perfect, eternally existing ideas of which our own supposedly real world was little more than a shadow. The idea sounds out there until you realize that Plato was thinking like a mathematician. We should remember that over the walls of Plato’s Academy was written “Let no man ignorant of geometry enter here”, and for the Greeks geometry was the essence of mathematics. Plato aimed to create a school of philosophical mathematicians much more than he hoped to turn philosophers into a sect of moral geometers.

Probably almost all mathematicians and physicists hold to some version of platonism, which means that they think mathematical structures are something discovered rather than a form of language invented by human beings. Non- mathematicians, myself very much included, often have trouble understanding this, but a simple example from Plato himself might help clarify.

When the Greeks played around with shapes for long enough they discovered things. And here we really should say discover because they had no idea shapes had these properties until they stumbled upon them through play.Plato’s dialogue Meno gave us the most famous demonstration of the discovery rather than invention of mathematical structures. Socrates asks a “slave boy” (we should take this to be the modern day equivalent of the man off the street) to figure out the area of a square which is double that of a square with a length of 2. The key, as Socrates leads the boy to see, is that one should turn the square with the side of 2 into a right triangle the length of whose hypotenuse is then seen as equal to one of the lengths of the doubled square allowing you easily calculate its area. The slave boy explains his measurement epiphany as the “recovery of knowledge from a past life.”

The big gap between Plato and modern platonists is that the ancient philosopher thought the natural world was a flawed copy of the crystalline purity of the mathematics of  thought. Contrast that with Newton who saw the hand of God himself in nature’s calculable regularities. The deeper the scientists of the modern age probed with their new mathematical tools the more nature appeared as Galileo said “ a book written in the language of mathematics”. For the moderns mathematical structures and natural structures became almost one and the same. The Spanish filmmaker and graphic designer Cristóbal Vila has a beautiful short over at AEON reflecting precisely this view.

It’s that “almost” that Tegmark has lept over with his Mathematical Universe Hypothesis (MUH). The essence of the MUH is not only that mathematical structures have an independent identity, or that nature is a book written in mathematics, but that the nature is a mathematical structure and just as all mathematical structures exist independent of whether we have discovered them or not, all logically coherent universes exists whether or not we have discovered their structures. This is platonism with a capital P, the latter half explaining how the MUH intersects with the idea of the multiverse.

One of the beneficial things Tegmark does with his book is to provide a simple to understand set of levels for different ideas that there is more than one universe.

Level I: Beyond our cosmological horizon

A Level I multiverse is the easiest for me to understand. It is within the lifetime of people still alive that our universe was held to be no bigger than our galaxy. Before that people thought the entirety of what was consisted of nothing but our solar system, so it is no wonder that people thought humanity was the center of creation’s story. As of right now the observable universe is around 46 billion light years across, actually older than the age of the universe due to its expansion. Yet, why should we think this observable horizon constitutes everything when such assumption has never proved true in the past? The Level I multiverse holds that there are entire other universes outside the limit of what we can observe.

Level II: Universes with different physical constants

The Level II multiverse again makes intuitive sense to me. If one assumes that the Big Bang was not the first or the last of its kind, and  if one assumes there are whole other, potentially an infinite number of universes, why assume that our is the only way a universe should be organized? Indeed, having a variety of physical constants to choose from would make the fine tuning of our own universe make more sense.

Level III: Many-worlds interpretation of quantum mechanics

This is where I start to get lost, or at least this particular doppelganger of me starts to get lost. Here we find Hugh Everett’s interpretation of quantum unpredictability. Rather than Schrodinger’s Cat being pushed from a superposition of states between alive and dead when you open the box, exposing the feline causes the universe to split- in one universe you have an alive cat, and in another a dead one. It gets me dizzy just thinking about it, just imagine the poor cat- wait, I am the cat!

Level IV: Ultimate ensemble

Here we have Tegmark’s model itself where every universe that can represented as a logically consistent mathematical structure is said to actually exist. In such a multiverse when you roll a six-sided die, there end up being six universes corresponding to each of the universes, but there is no universe where you have rolled a “1 not 1” , and so on. If a universe’s mathematical structure can be described, then that universe can be said to exist there being, in Tegmark’s view, no difference between such a mathematical structure and a universe.

I had previously thought the idea of the multiverse was a way to give scale to the shadow of our ignorance and expand our horizon in space and time. As mentioned, we had once thought all that is was only as big as our solar system and merely thousands of years old. By the 19th century the universe had expanded to the size of our galaxy and the past had grown to as much as 400 million years. By the end of the 20th century we knew there were at least 100 billion galaxies in the universe and that its age was 13.7 billion. There is no reason to believe that we have grasped the full totality of existence, that the universe, beyond our observable horizon isn’t even bigger, and the past deeper. There is “no sign on the Big Bang saying ‘this happened only once’” as someone once said cleverly whose attribution I cannot find.

Ideas of the multiverse seemed to explain the odd fact that the universe seems fine-tuned to provide the conditions for life, Martin Rees “six numbers” such as Epsilon (ε)- the strength of the force binding nucleons to nuclei. If you have a large enough sample of universes then the fact that some universes are friendly for life starts to make more sense. The problem, I think, comes in when you realize just how large this sample size has to be to get you to fine tuning- somewhere on the order of 10 ^200. What this means is that you’ve proposed the existence of a very very large or even infinite number of values, as far as we know which are unobservable to explain essentially six. If this is science, it is radically different from the science we’ve known since Galileo dropped cannon balls off of the Leaning Tower of Pisa.

For whatever reason, rather than solidify my belief in the possibility of the multiverse, or convert me to platonism, Tegmark’s book left me with a whole host of new questions, which is what good books do. The problem is my damned doppelgangers who can be found not only at the crazy quantum Level III, but at the levels I thought were a preserve of Copernican Mediocrity – Levels I and II, or as Tegmark says.

The only difference between Level I and Level III is where your doppelgängers reside.

Yet, to my non-physicist eyes, the different levels of multiverse sure seems distinct. Level III seems to violate Copernican Mediocrity with observers and actors being able to call into being whole new timelines with even the most minutea laden of their choices, whereas Levels I and II simply posit that a universe sufficiently large enough and sufficiently extended enough in time would allow for repeat performances down to the smallest detail- perhaps the universe is just smaller than that, or less extended in time, or there is some sort of kink whereby when what the late Stephen J Gould called the “life tape” is replayed you can never get the same results twice.

Still, our intuitions about reality have often been proven wrong, so no theory can be discounted on the basis of intuitive doubts. There are other reasons, however, why we might use caution when it comes to multiverse theories, namely, their potential risk to the scientific endeavor itself.  The fact that we can never directly observe parts of the multiverse that are not our own means that we would have to step away from falsifiability as the criteria for scientific truth. The physicist Sean Carroll  argues that falsifiability is a weak criteria, what makes a theory scientific is that it is “direct” (says something definite about how reality works) and “empirical”, by which he no longer means the Popperian notion of falsifiability, but its ability to explain the world. He writes:

Consider the multiverse.

If the universe we see around us is the only one there is, the vacuum energy is a unique constant of nature, and we are faced with the problem of explaining it. If, on the other hand, we live in a multiverse, the vacuum energy could be completely different in different regions, and an explanation suggests itself immediately: in regions where the vacuum energy is much larger, conditions are inhospitable to the existence of life. There is therefore a selection effect, and we should predict a small value of the vacuum energy. Indeed, using this precise reasoning, Steven Weinberg did predict the value of the vacuum energy, long before the acceleration of the universe was discovered.

We can’t (as far as we know) observe other parts of the multiverse directly. But their existence has a dramatic effect on how we account for the data in the part of the multiverse we do observe.

One could look at Tegmark’s MUH and Carroll’s comments as a broadening of our scientific and imaginative horizons and the continuation of our powers to explain into realms beyond what human beings will ever observe. The idea of a 22nd version of Plato’s Academy using amazingly powerful computers to explore all the potential universes ala Tegmark’s MUH is an attractive future to me. Yet, given how reliant we are on science and the technology that grows from it, and given the role of science in our society in establishing the consensus view of what our shared physical reality actually is, we need to be cognizant and careful of what such a changed understanding of science actually might mean.

The physicist, George Ellis, for one, thinks the multiverse hypothesis, and not just Tegmark’s version of it, opens the door to all sorts of pseudoscience such as Intelligent Design. After all, the explanation that the laws and structure of our universe can be understood only by reference to something “outside” is the essence of explanations from design as well, and just like the multiverse, cannot be falsified.

One might think that the multiverse was a victory of theorizing over real world science, but I think Sean Carroll is essentially right when he defends the multiverse theory by saying:

 Science is not merely armchair theorizing; it’s about explaining the world we see, developing models that fit the data.

It’s the use of the word “model” here rather than “theory” that is telling. For a model is a type of representation of something whereas a theory constitutes an attempt at a coherent self-contained explanation. If the move from theories to models was only happening in physics then we might say that this had something to do merely with physics as a science rather than science in general. But we see this move all over the place.

Among, neuroscientists, for example, there is no widely agreed upon theory of how SSRIs work, even though they’ve been around for a generation, and there’s more. In a widely debated speech Noam Chomsky argued that current statistical models in AI were bringing us no closer to the goal of AGI or the understanding of human intelligence because they lacked any coherent theory of how intelligence works. As Yaden Katz wrote for The Atlantic:

Chomsky critiqued the field of AI for adopting an approach reminiscent of behaviorism, except in more modern, computationally sophisticated form. Chomsky argued that the field’s heavy use of statistical techniques to pick regularities in masses of data is unlikely to yield the explanatory insight that science ought to offer. For Chomsky, the “new AI” — focused on using statistical learning techniques to better mine and predict data — is unlikely to yield general principles about the nature of intelligent beings or about cognition.

Likewise, the field of systems biology and especially genomic science is built not on theory but on our ability to scan enormous databases of genetic information looking for meaningful correlations. The new field of social physics is based on the idea that correlations of human behavior can be used as governance and management tools, and business already believes that statistical correlation is worth enough to spend billions on and build an economy around.

Will this work as well as the science we’ve had for the last five centuries? It’s too early to tell, but it certainly constitutes a big change for science and the rest of us who depend upon it. This shouldn’t be taken as an unqualified defense of theory- for if theory was working then we wouldn’t be pursuing this new route of data correlation whatever the powers of our computers. Yet, those who are pushing this new model of science should be aware of its uncertain success, and its dangers.

The primary danger I can see from these new sorts of science, and this includes the MUH, is that it challenges the role of science in establishing the consensus reality which we all must agree upon. Anyone who remembers their Thomas Kuhn can recall that what makes science distinct from almost any system of knowledge we’ve had before, is that it both enforces a consensus view of physical reality beyond which an individual’s view of the world can be considered “unreal”, and provides a mechanism by which this consensus reality can be challenged and where the challenge is successful overturned.

With multiverse theories we are in approaching what David Engelman calls Possibilism the exploration of every range of ways existence can be structured that is compatible with the findings of science and is rationally coherent. I find this interesting as a philosophical and even spiritual project, but it isn’t science, at least as we’ve understood science since the beginning of the modern world. Declaring the project to be scientific blurs the lines between science and speculation and might allow people to claim the kind of understanding over uncertainty that makes politics and consensus decisions regarding acute needs of the present, such a global warming, or projected needs of the future impossible.

Let me try to clarify this. I found it very important that in Our Mathematical Universe Tegmark tried to tackle the problem of existential risks facing the human future. He touches upon everything from climate change, to asteroid impacts, to pandemics to rogue AI. Yet, the very idea that there are multiple versions of us out there, and that our own future is determined seems to rob these issues of their urgency. In an “infinity” of predetermined worlds we destroy ourselves, just as in an “infinity” of predetermined worlds we do what needs to be done. There is no need to urge us forward because, puppet-like, we are destined to do one thing or the other on this particular timeline.

Morally and emotionally, how is what happens in this version of the universe in the future all that different from what happens in other universe? Persons in those parallel universes are even closer to us, our children, parents, spouses, and even ourselves than the people of the future on our own timeline. According to the deterministic models of the multiverse, the world of these others are outside of our influence and both the expansion or contraction of our ethical horizon leave us in the same state of moral paralysis. Given this, I will hold off on believing in the multiverse, at least on the doppelganger scale of Level I and II, and especially Levels III and IV until it actually becomes established as a scientific fact,which it is not at the moment, and given our limitations, perhaps never will be, even if it is ultimately true.

All that said, I greatly enjoyed Tegmark’s book, it was nothing if not thought provoking. Nor would I say it left me with little but despair, for in one section he imagined a Spinoza-like version of eternity that will last me a lifetime, or perhaps I should say beyond.  I am aware that I will contradict myself here: his image that gripped me was of an individual life seen as a braid of space-time. For Tegmark, human beings have the most complex space-time braids we know of. The idea vastly oversimplified by the image above.

About which Tegmark explains:

At both ends of your spacetime braid, corresponding to your birth and death, all the threads gradually separate, corresponding to all your particles joining, interacting and finally going their own separate ways. This makes the spacetime structure of your entire life resemble a tree: At the bottom, corresponding to early times, is an elaborate system of roots corresponding to the spacetime trajectories of many particles, which gradually merge into thicker strands and culminate in a single tube-like trunk corresponding to your current body (with a remarkable braid-like pattern inside as we described above). At the top, corresponding to late times, the trunk splits into ever finer branches, corresponding to your particles going their own separate ways once your life is over. In other words, the pattern of life has only a finite extent along the time dimension, with the braid coming apart into frizz at both ends.

Because mathematical structures always exist whether or not anyone has discovered them, our life braid can be said to have always existed and will always exist. I have never been able to wrap my head around the religious idea of eternity, but this eternity I understand. Someday I may even do a post on how the notion of time found in the MUH resembles the medieval idea of eternity as nunc stans, the standing-now, but for now I’ll use it to address more down to earth concerns.

My youngest daughter, philosopher that she is, has often asked me “where was I before I was born?”. To which my lame response has been “you were an egg” which for a while made big breakfasts difficult. Now I can just tell her to get out her crayons to scribble, and we’ll color our way to something profound.

 

Why the Castles of Silicon Valley are Built out of Sand

Ambrogio_Lorenzetti Temperance with an hour glass Allegory of Good Government

If you get just old enough, one of the lessons living through history throws you is that dreams take a long time to die. Depending on how you date it, communism took anywhere from 74 to 143 years to pass into the dustbin of history, though some might say it is still kicking. The Ptolemaic model of the universe lasted from 100 AD into the 1600’s. Perhaps even more dreams than not simply refuse to die, they hang on like ghost, or ghouls, zombies or vampires, or whatever freakish version of the undead suits your fancy. Naming them would take up more room than I can post, and would no doubt start one too many arguments, all of our lists being different. Here, I just want to make an argument for the inclusion of one dream on our list of zombies knowing full well the dream I’ll declare dead will have its defenders.

The fact of the matter is, I am not even sure what to call the dream I’ll be talking about. Perhaps, digitopia is best. It was the dream that emerged sometime in the 1980’s and went mainstream in the heady 1990’s that this new thing we were creating called the “Internet” and the economic model it permitted was bound to lead to a better world of more sharing, more openness, more equity, if we just let its logic play itself out over a long enough period of time. Almost all the big-wigs in Silicon Valley, the Larry Pages and Mark Zuckerbergs, and Jeff Bezos(s), and Peter Diamandis(s) still believe this dream, and walk around like 21st century versions of Mary Magdalene claiming they can still see what more skeptical souls believe has passed.

By far, the best Doubting Thomas of digitopia we have out there is Jaron Lanier. In part his power in declaring the dream dead comes from the fact that he was there when the dream was born and was once a true believer. Like Kevin Bacon in Hollywood, take any intellectual heavy hitter of digital culture, say Marvin Minsky, and you’ll find Lanier having some connection. Lanier is no Luddite, so when he says there is something wrong with how we have deployed the technology he in part helped develop, it’s right and good to take the man seriously.

The argument Lanier makes in his most recent book Who Owns the Future? against the economic model we have built around digital technology in a nutshell is this: what we have created is a machine that destroys middle class jobs and concentrates information, wealth and power. Say what? Hasn’t the Internet and mobile technology democratized knowledge? Don’t average people have more power than ever before? The answer to both questions is no and the reason why is that the Internet has been swallowed by its own logic of “sharing”.

We need to remember that the Internet really got ramped up when it started to be used by scientists to exchange information between each other. It was built on the idea of openness and transparency not to mention a set of shared values. When the Internet leapt out into public consciousness no one had any idea of how to turn this sharing capacity and transparency into the basis for an economy. It took the aftermath of dot com bubble and bust for companies to come up with a model of how to monetize the Internet, and almost all of the major tech companies that dominate the Internet, at least in America- and there are only a handful- Google, FaceBook and Amazon, now follow some variant of this model.

The model is to aggregate all the sharing that the Internet seems to naturally produce and offer it, along with other “compliments” for “free” in exchange for one thing: the ability to monitor, measure and manipulate through advertising whoever uses their services. Like silicon itself, it is a model that is ultimately built out of sand.

When you use a free service like Instagram there are three ways its ultimately paid for. The first we all know about, the “data trail” we leave when using the site is sold to third party advertisers, which generates income for the parent company, in this case FaceBook. The second and third ways the service is paid for I’ll get to in a moment, but the first way itself opens up all sorts of observations and questions that need to be answered.

We had thought the information (and ownership) landscape of the Internet was going to be “flat”. Instead, its proven to be extremely “spiky”. What we forgot in thinking it would turn out flat was that someone would have to gather and make useful the mountains of data we were about to create. The big Internet and Telecom companies are these aggregators who are able to make this data actionable by being in possession of the most powerful computers on the planet that allow them to not only route and store, but mine for value in this data. Lanier has a great name for the biggest of these companies- he calls them Siren Servers.

One might think whatever particular Siren Servers are at the head of the pack is a matter of which is the most innovative. Not really. Rather, the largest Siren Servers have become so rich they simply swallow any innovative company that comes along. FaceBook gobbled up Instagram because it offered a novel and increasingly popular way to share photos.

The second way a free service like Instagram is paid for, and this is one of the primary concerns of Lanier in his book, is that it essentially cannibalizes to the point of destruction the industry that used to provide the service, which in the “old economy” meant it also supported lots of middle class jobs.

Lanier states the problem bluntly:

 Here’s a current example of the challenge we face. At the height of its power, the photography company Kodak employed more than 140,000 people and was worth $28 billion. They even invented the first digital camera. But today Kodak is bankrupt, and the new face of digital photography is Instagram. When Instagram was sold to FaceBook for a billion dollars in 2012, it employed only thirteen people.  (p.2)

Calling Thomas Piketty….

As Bill Davidow argued recently in The Atlantic the size of this virtual economy where people share and get free stuff in exchange for their private data is now so big that it is giving us a distorted picture of GDP. We can no longer be sure how fast our economy is growing. He writes:

 There are no accurate numbers for the aggregate value of those services but a proxy for them would be the money advertisers spend to invade our privacy and capture our attention. Sales of digital ads are projected to be $114 billion in 2014,about twice what Americans spend on pets.

The forecasted GDP growth in 2014 is 2.8 percent and the annual historical growth rate of middle quintile incomes has averaged around 0.4 percent for the past 40 years. So if the government counted our virtual salaries based on the sale of our privacy and attention, it would have a big effect on the numbers.

Fans of Joseph Schumpeter might see all this churn as as capitalism’s natural creative destruction, and be unfazed by the government’s inability to measure this “off the books” economy because what the government cannot see it cannot tax.

The problem is, unlike other times in our history, technological change doesn’t seem to be creating many new middle class jobs as fast as it destroys old ones. Lanier was particularly sensitive to this development because he always had his feet in two worlds- the world of digital technology and the world of music. Not the Katy Perry world of superstar music, but the kinds of people who made a living selling local albums, playing small gigs, and even more importantly, providing the services that made this mid-level musical world possible. Lanier had seen how the digital technology he loved and helped create had essentially destroyed the middle class world of musicians he also loved and had grown up in. His message for us all was that the Siren Servers are coming for you.

The continued advance of Moore’s Law, which, according to Charlie Stross, will play out for at least another decade or so, means not so much that we’ll achieve AGI, but that machines are just smart enough to automate some of the functions we had previously thought only human beings were capable of doing. I’ll give an example of my own. For decades now the GED test, which people pursue to obtain a high school equivalency diploma, has had an essay section. Thousands of people were necessary to score these essays by hand, the majority of whom were likely paid to do so. With the new, computerized GED test this essay scoring has now been completely automated, human readers made superfluous.

This brings me to the third way this new digital capabilities are paid for. They cannibalize work human beings have already done to profit a company who presents and sells their services as a form of artificial intelligence. As Lanier writes of Google Translate:

It’s magic that you can upload a phrase in Spanish into the cloud services of a company like Google or Microsoft, and a workable, if imperfect, translation to English is returned. It’s as if there’s a polyglot artificial intelligence residing up there in that great cloud of server farms.

But that is not how cloud services work. Instead, a multitude of examples of translations made by real human translators are gathered over the Internet. These are correlated with the example you send for translation. It will almost always turn out that multiple previous translations by real human translators had to contend with similar passages, so a collage of those previous translations will yield a usable result.

A giant act of statistics is made virtually free because of Moore’s Law, but at core the act of translation is based on real work of people.

Alas, the human translators are anonymous and off the books. (19-20)

The question all of us should be asking ourselves is not “could a machine be me?” with all of our complexity and skills, but “could a machine do my job?” the answer to which, in 9 cases out of 10, is almost certainly- “yes!”

Okay, so that’s the problem, what is Lanier’s solution? His solution is not that we pull a Ned Ludd and break the machines or even try to slow down Moore’s Law. Instead, what he wants us to do is to start treating our personal data like property. If someone wants to know my buying habits they have to pay a fee to me the owner of this information. If some company uses my behavior to refine their algorithm I need to be paid for this service, even if I was unaware I had helped in such a way. Lastly, anything I create and put on the Internet is my property. People are free to use it as they chose, but they need to pay me for it. In Lanier’s vision each of us would be the recipients of a constant stream of micropayments from Siren Servers who are using our data and our creations.

Such a model is very interesting to me, especially in light of other fights over data ownership, namely the rights of indigenous people against bio-piracy, something I was turned on to by Paolo Bacigalupi’s bio-punk novel The Windup Girl, and what promises to be an increasing fight between pharmaceutical/biotech firms and individuals over the use of what is becoming mountains of genetic data. Nevertheless, I have my doubts as to Lanier’s alternative system and will lay them out in what follows.

For one, such a system seems likely to exacerbate rather than relieve the problem of rising inequality. Assuming most of the data people will receive micropayments for will be banal and commercial in nature, people who are already big spenders are likely to get a much larger cut of the micropayments pie. If I could afford such things it’s no doubt worth a lot for some extra piece of information to tip the scales between me buying a Lexus or a Beemer, not so much if it’s a question of TIDE vs Whisk.

This issue would be solved if Lanier had adopted the model of a shared public pool of funds where micropayments would go rather than routing them to the actual individual involved, but he couldn’t do this out of commitment to the idea that personal data is a form of property. Don’t let his dreadlocks fool you, Lanier is at bottom a conservative thinker. Such a fee might balance out the glaring problem that Siren Servers effectively pay zero taxes

But by far the biggest hole in Lanier’s micropayment system is that it ignores the international dimension of the Internet. Silicon Valley companies may be barreling down on their model, as can be seen in Amazon’s recent foray into the smartphone market, which attempts to route everything through itself, but the model has crashed globally. Three events signal the crash, Google was essentially booted out of China, the Snowden revelations threw a pale of suspicion over the model in an already privacy sensitive Europe, and the EU itself handed the model a major loss with the “right to be forgotten” case in Spain.

Lanier’s system, which accepts mass surveillance as a fact, probably wouldn’t fly in a privacy conscious Europe, and how in the world would we force Chinese and other digital pirates to provide payments of any scale? And China and other authoritarian countries have their own plans for their Siren Servers, namely, their use as tools of the state.

The fact of the matter is their is probably no truly global solution to continued automation and algorithmization, or to mass surveillance. Yet, the much feared “splinter-net”, the shattering of the global Internet, may be better for freedom than many believe. This is because the Internet, and the Siren Servers that run it, once freed from its spectral existence in the global ether, becomes the responsibility of real territorially bound people to govern. Each country will ultimately have to decide for itself both how the Internet is governed and define its response to the coming wave of automation. There’s bound to be diversity because countries are diverse, some might even leap over Lanier’s conservativism and invent radically new, and more equitable ways of running an economy, an outcome many of the original digitopians who set this train a rollin might actually be proud of.

 

How Should Humanity Steer the Future?

FQXi

Over the spring the Fundamental Questions Institute (FQXi) sponsored an essay contest the topic of which should be dear to this audience’s heart- How Should Humanity Steer the Future? I thought I’d share some of the essays I found most interesting, but there are lots, lots, more to check out if you’re into thinking about the future or physics, which I am guessing you might be.

If there was any theme I found across the 140 or so essays entered in the contest – it was that the 21st century was make- it- or-break-it for humanity, so we need to get our act together, and fast. If you want a metaphor for this sentiment, you couldn’t do much better than Nietzsche’s idea that humanity is like an individual walking on a “rope over an abyss”.

A Rope over an Abyss by Laurence Hitterdale

Hitterdale’s idea is that for most of human history the qualitative aspects of human experience have pretty much been the same, but that is about to change. What are facing, according to Hitterdale, is the the extinction of our species or the realization of our wildest perennial human dreams- biological superlongevity, machine intelligence that seem to imply the end of drudgery and scarcity. As he points out, some very heavy hitting thinkers seem to think we live in make or break times:

 John Leslie, judged the probability of human extinction during the next five centuries as perhaps around thirty per cent at least. Martin Rees in 2003 stated, “I think the odds are no better than fifty-fifty that our present civilization on Earth will survive to the end of the present century.”Less than ten years later Rees added a comment: “I have been surprised by how many of my colleagues thought a catastrophe was even more likely than I did, and so considered me an optimist.”

In a nutshell, Hiterdale’s solution is for us to concentrate more on preventing negative outcomes that achieving positive ones in this century. This is because even positive outcomes like human superlongevity and greater than human AI could lead to negative outcomes if we don’t sort out our problems or establish controls first.

How to avoid steering blindly: The case for a robust repository of human knowledge by Jens C. Niemeyer

This was probably my favorite essay overall because it touched on issues dear to my heart- how will we preserve the past in light of the huge uncertainties of the future.  Niemeyer makes the case that we need to establish a repository of human knowledge in the event we suffer some general disaster, and how we might do this.

By one of those strange incidences of serendipity, while thinking about Niemeyer’s ideas and browsing the science section of my local bookstore I came across a new book by Lewis Dartnell The Knowledge: How to Rebuild Our World from Scratch which covers the essential technologies human beings will need if they want to revive civilization after a collapse. Or maybe I shouldn’t consider it so strange. Right next to The Knowledge was another new book The Improbability Principle: Why Coincidences, Miracles, and Rare Events Happen Every Day, by David Hand, but I digress.

The digitization of knowledge and its dependence on the whole technological apparatus of society actually makes us more vulnerable to the complete loss of information both social and personal and therefore demands that we backup our knowledge. Only things like a flood or a fire could have destroyed our lifetime visual records the way we used to store them- in photo albums- but now all many of us would have to do is lose or break our phone. As Niemeyer  says:

 Currently, no widespread efforts are being made to protect digital resources against global disasters and to establish the means and procedures for extracting safeguarded digital information without an existing technological infrastructure. Facilities like, for instance, the Barbarastollen underground archive for the preservation of Germany’s cultural heritage (or other national and international high-security archives) operate on the basis of microfilm stored at constant temperature and low humidity. New, digital information will most likely never exist in printed form and thus cannot be archived with these techniques even in principle. The repository must therefore not only be robust against man-made or natural disasters, it must also provide the means for accessing and copying digital data without computers, data connections, or even electricity.

Niemeyer imagines the creation of such a knowledge repository as a unifying project for humankind:

Ultimately, the protection and support of the repository may become one of humanity’s most unifying goals. After all, our collective memory of all things discovered or created by mankind, of our stories, songs and ideas, have a great part in defining what it means to be human. We must begin to protect this heritage and guarantee that future generations have access to the information they need to steer the future with open eyes.

Love it!

One Cannot Live in the Cradle Forever by Robert de Neufville

If Niemeyer is trying to goad us into preparing should the worst occur, like Hitterdale, Robert de Neufville is working towards making sure these nightmare, especially self-inflicted ones, don’t come true in the first place. He does this as a journalist and writer and as an associate of the Global Catastrophic Risk Institute.

As de Neufville points out, and as I myself have argued before, the silence of the universe gives us reason to be pessimistic about the long term survivability of technological civilization. Yet, the difficulties that stand in the way of our minimizing global catastrophic risks, thing like developing an environmentally sustainable modern economy, protecting ourselves against global pandemics or meteor strikes of a scale that might set civilization on its knees, or the elimination of the threat of nuclear war, are more challenges of politics than technology. He writes:

But the greatest challenges may be political. Overcoming the technical challenges may be easy in comparison to using our collective power as a species wisely. If humanity were a single person with all the knowledge and abilities of the entire human race, avoiding nuclear war, and environmental catastrophe would be relatively easy. But in fact we are billions of people with different experiences, different interests, and different visions for the future.

In a sense, the future is a collective action problem. Our species’ prospects are effectively what economists call a “common good”. Every person has a stake in our future. But no one person or country has the primary responsibility for the well-being of the human race. Most do not get much personal benefit from sacrificing to lower the risk of extinction. And all else being equal each would prefer that others bear the cost of action. Many powerful people and institutions in particular have a strong interest in keeping their investments from being stranded by social change. As Jason Matheny has said, “extinction risks are market failures”.

His essay makes an excellent case that it is time we mature as a species and live up to our global responsibilities. The most important of which is ensuring our continued existence.

The “I” and the Robot by Cristinel Stoica

Here Cristinel Stoica makes a great case for tolerance, intellectual humility and pluralism, a sentiment perhaps often expressed but rarely with such grace and passion.

As he writes:

The future is unpredictable and open, and we can make it better, for future us and for our children. We want them to live in peace and happiness. They can’t, if we want them to continue our fights and wars against others that are different, or to pay them back bills we inherited from our ancestors. The legacy we leave them should be a healthy planet, good relations with others, access to education, freedom, a healthy and critical way of thinking. We have to learn to be free, and to allow others to be free, because this is the only way our children will be happy and free. Then, they will be able to focus on any problems the future may reserve them.

Ends of History and Future Histories in the Longue Duree by Benjamin Pope

In his essay Benjamin Pope is trying to peer into the human future over the long term, by looking at the types of institutions that survive across centuries and even millennia: Universities, “churches”, economic systems- such as capitalism- and potentially multi-millennial, species – wide projects, namely space colonization.

I liked Pope’s essay a lot, but there are parts of it I disagreed with. For one, I wish he would have included cities. These are the oldest lived of human institutions, and unlike Pope’s other choices are political, and yet manage to far out live other political forms- namely states or empires. Rome far outlived the Roman Empire and my guess is that many American cities, as long as they are not underwater, will outlive the United States.

Pope’s read on religion might be music to the ears of some at the IEET:

Even the very far future will have a history, and this future history may have strong, path-dependent consequences. Once we are at the threshold of a post-human society the pace of change is expected to slow down only in the event of collapse, and there is a danger that any locked-in system not able to adapt appropriately will prevent a full spectrum of human flourishing that might otherwise occur.

Pope seems to lean toward the negative take on the role of religion to promote “a full spectrum of human flourishing” and , “as a worst-case scenario, may lock out humanity from futures in which peace and freedom will be more achievable.”

To the surprise of many in the secular West, and that includes an increasingly secular United States, the story of religion will very much be the story of humanity over the next couple of centuries, and that includes especially the religion that is dying in the West today, Christianity. I doubt, however, that religion has either the will or the capacity to stop or even significantly slow technological development, though it might change our understanding of it. It also the case that, at the end of the day, religion only thrives to the extent it promotes human flourishing and survival, though religious fanatics might lead us to think otherwise. I am also not the only one to doubt Pope’s belief that “Once we are at the threshold of a posthuman society the pace of change is expected to slow down only in the event of collapse”.

Still, I greatly enjoyed Pope’s essay, and it was certainly thought provoking.  

Smooth seas do not make good sailors by Georgina Parry

If you’re looking to break out of your dystopian gloom for a while, and I myself keep finding reasons for which to be gloomy, then you couldn’t do much better to take a peak and Georgina Parry’s fictionalized peak at a possible utopian future. Like a good parent, Parry encourages our confidence, but not our hubris:

 The image mankind call ‘the present’ has been written in the light but the material future has not been built. Now it is the mission of people like Grace, and the human species, to build a future. Success will be measured by the contentment, health, altruism, high culture, and creativity of its people. As a species, Homo sapiens sapiens are hackers of nature’s solutions presented by the tree of life, that has evolved over millions of years.

The future is the past by Roger Schlafly

Schlafly’s essay literally made my draw drop, it was so morally absurd and even obscene.

Consider a mundane decision to walk along the top of a cliff. Conventional advice would be to be safe by staying away from the edge. But as Tegmark explains, that safety is only an illusion. What you perceive as a decision to stay safe is really the creation of a clone who jumps off the cliff. You may think that you are safe, but you are really jumping to your death in an alternate universe.

Armed with this knowledge, there is no reason to be safe. If you decide to jump off thecliff, then you really create a clone of yourself who stays on top of the cliff. Both scenarios are equally real, no matter what you decide. Your clone is indistinguishable from yourself, and will have the same feelings, except that one lives and the other dies. The surviving one can make more clones of himself just by making more decisions.

Schlafly rams the point home that under current views of the multiverse in physics nothing you do really amount to a choice, we are stuck on an utterly deterministic wave-function on whose branching where we play hero and villain, and there is no space for either praise or guilt. You can always act as a coward or naive sure that somewhere “out there” another version of “you” does the right thing. Saving humanity from itself in the ways proposed by Hitterdale and de Neufville, preparing for the worst as in Niemeyer and Pope or trying to build a better future as Parry and Stoica makes no sense here. Like poor Schrodinger’s cat, on some branches we end up surviving, on some we destroy ourselves and it is not us who is in charge of which branch we are on.

The thought made me cringe, but then I realized Schlafly must be playing a Swiftian game. Applying quantum theory to the moral and political worlds we inhabit leads to absurdity. This might or might not call into question the fundamental  reality of the multiverse or the universal wave function, but it should not lead us to doubt or jettison our ideas regarding our own responsibility for the lives we live, which boil down to the decisions we have made.

Chinese Dream is Xuan Yuan’s Da Tong by KoGuan Leo

Those of us in the West probably can’t help seeing the future of technology as nearly synonymous with the future of our own civilization, and a civilization, when boiled down to its essence, amounts to a set of questions a particular group of human beings keeps asking, and their answer to these questions. The questions in the West are things like what is the right balance between social order and individual freedom? What is the relationship between the external and internal (mental/spiritual) worlds, including the question of the meaning of Truth? How might the most fragile thing in existence, and for us the most precious- the individual- survive across time? What is the relationship between the man-made world- and culture- visa-vi nature, and which is most important to the identity and authenticity of the individual?

The progress of science and technology intersect with all of these questions, but what we often forget is that we have sown the seeds of science and technology elsewhere and the environment in which they will grow can be very different and hence their application and understanding different based as they will be on a whole different set of questions and answers encountered by a distinct civilization.

Leo KoGuan’s essay approaches the future of science and technology from the perspective of Chinese civilization. Frankly, I did not really understand his essay which seemed to me a combination of singularitarianism and Chinese philosophy that I just couldn’t wrap my head around.  What am I to make of this from the Founder and Chairman of a 5.1 billion dollar computer company:

 Using the KQID time-engine, earthlings will literally become Tianming Ren with God-like power to create and distribute objects of desire at will. Unchained, we are free at last!

Other than the fact that anyone interested in the future of transhumanism absolutely needs to be paying attention to what is happening and what and how people are thinking in China.

Lastly, I myself had an essay in the contest. It was about how we are facing incredible hurdles in the near future and that one of the ways we might succeed in facing these hurdles is by recovering the ability to imagine what an ideal society, Utopia, might look like. Go figure.