The Kingdom of Machines

The Book of the Machines

For anyone thinking about the future relationship between nature-man-machines I’d like to make the case for the inclusion of an insightful piece of fiction to the cannon. All of us have heard of H.G. Wells, Isaac Asimov or Arthur C. Clarke. And many, though perhaps fewer, of us have likely heard of fiction authors from the other side of the nature/technology fence, writers like Mary Shelley, or Ursula Le Guin, or nowadays, Paolo Bacigalupi, but certainly almost none of us have heard of Samuel Butler, or better, read his most famous novel Erewhon (pronounced with 3 short syllables E-re-Whon.)

I should back up. Many of us who have heard of Butler and Erewhon have likely done so through George Dyson’s amazing little book Darwin Among the Machines, a book that itself deserves a top spot in the nature-man-machine cannon and got its title from an essay of Butler’s that found its way into the fictional world of his Erewhon. Dyson’s 1997 bookwritten just as the Internet age was ramping up tried to place the digital revolution within the longue duree of human and evolutionary history, but Butler had gotten there first. Indeed, Erewhon articulated challenges ahead of us which took almost 150 years to unfold, issues being discussed today by a set of scientists and scholars concerned over both the future of machines and the ultimate fate of our species.

A few weeks back Giulio Prisco at the IEET pointed me in the direction of an editorial placed in both the Huffington Post and the Independent by a group of scientists including, Stephen Hawking, Nick Bostrom and Max Tegmark warning of the potential dangers emerging from technologies surrounding artificial intelligence that are now going through an explosive period of development. As the authors of the letter note:

Artificial-intelligence (AI) research is now progressing rapidly. Recent landmarks such as self-driving cars, a computer winning at Jeopardy! and the digital personal assistants Siri, Google Now and Cortana are merely symptoms of an IT arms race fuelled by unprecedented investments and building on an increasingly mature theoretical foundation.

Most seem to think we are at the beginning rather than at the end of this AI revolution and see it likely unfolding into an unprecedented development; namely, machines that are just as smart if not incredibly more so than their human creators. Should the development of AI as intelligent or more intelligent than ourselves be a concern? Giulio himself doesn’t think so  believing that advanced AIs are in a sense both our children and our evolutionary destiny. The scientists and scholars behind the letter to Huffpost and The Independent , however, are very concerned.  As they put it:

One can imagine such technology outsmarting financial markets, out-inventing human researchers, out-manipulating human leaders, and developing weapons we cannot even understand. Whereas the short-term impact of AI depends on who controls it, the long-term impact depends on whether it can be controlled at all.

And again:

Success in creating AI would be the biggest event in human history. Unfortunately, it might also be the last, unless we learn how to avoid the risks.

In a probing article about the existential risks posed by artificial intelligence, and more so the larger public’s indifference to it, James Hamblin writes of the theoretical physicists and Nobel Laureate Frank Wilczek another of the figures trying to promote greater serious public awareness of the risks posed by artificial intelligence. Wilczek thinks we will face existential risks from intelligent machines not over the long haul of human history but in a very short amount of time.

It’s not clear how big the storm will be, or how long it’s going to take to get here. I don’t know. It might be 10 years before there’s a real problem. It might be 20, it might be 30. It might be five. But it’s certainly not too early to think about it, because the issues to address are only going to get more complex as the systems get more self-willed.

To be honest, it’s quite hard to take these scientists and thinkers seriously, perhaps because I’ve been so desensitized by Hollywood dystopias staring killer robots. But when your Noahs are some of the smartest guys on the planet it’s probably a good idea if not to actually start building your boat to at least be able to locate and beat a path if necessary to higher ground.

What is the scale of the risk we might be facing? Here’s physicist Max Tegmark from Hamblin’s piece:

Well, putting it in the day-to-day is easy. Imagine the planet 50 years from now with no people on it. I think most people wouldn’t be too psyched about that. And there’s nothing magic about the number 50. Some people think 10, some people think 200, but it’s a very concrete concern.

If there’s a potential monster somewhere on your path it’s always good to have some idea of its actual shape otherwise you find yourself jumping and lunging at harmless shadows.  How should we think about potentially humanity threatening AI’s? The first thing is that we need to be clear about what is happening. For all the hype, the AI sceptics are probably right– we are nowhere near replicating the full panoply of our biological intelligence in a machine. Yet, this fact should probably increase rather than decrease our concern regarding the potential threat from “super-intelligent” AIs. However far they remain from the full complexity of human intelligence, on account of their much greater speed and memory such machines largely already run something so essential and potentially destructive as our financial markets, the military is already discussing the deployment of autonomous weapons systems, with the domains over which the decisions of AIs hold sway only likely to increase over time. One just needs to imagine one or more such systems going rouge and doing what may amount to highly destructive things its creators or programmers did not imagine or intend to comprehend the risk. Such a rogue system would be more akin to a killer-storm than Lex Luthor, and thus, Nick Bostrom is probably on to something profound when he suggest that one of the worse things we could do would be to anthropomorphize the potential dangers. Telling Ross Anderson over at Aeon:

You can’t picture a super-smart version of yourself floating above the situation. Human cognition is only one species of intelligence, one with built-in impulses like empathy that colour the way we see the world, and limit what we are willing to do to accomplish our goals. But these biochemical impulses aren’t essential components of intelligence. They’re incidental software applications, installed by aeons of evolution and culture. Bostrom told me that it’s best to think of an AI as a primordial force of nature, like a star system or a hurricane — something strong, but indifferent.

The crazy thing is that Erewhon a novel published in 1872 clearly stated almost all of these dangers and perspectives. If these fears prove justified it will be Samuel Butler rather than Friedrich Nietzsche who will have been the great prophet to emerge from the the 19th century.

Erewhon was released right on the eve of what’s called the second industrial revolution that lasted from the 1870’s to World War I. Here you get mass rail and steam ships, gigantic factories producing iron and steel, and the birth of electrification. It is the age romanticized and reimagined today by cultural movement of steampunk.

The novel appeared 13 years after the publication of Charles Darwin’s The Origin of Species and even more importantly one year after Darwin’s even more revolutionary The Descent of Man. As we learn in Dyson’s book, Butler and Darwin were engaged in a long lasting intellectual feud, though the issue wasn’t evolution itself, but Butler’s accusation that Charles Darwin had essentially ripped his theory from his grandfather Erasmus Darwin without giving him any of the credit. Be that as it may,

Erewhon was never intended as many thought at the time, as a satire of Darwinism, but was Darwinian to its core, and tried to apply the lessons of the worldview made apparent by the Theory of Evolution to the innovatively exploding world of machines Butler saw all around him.

The narrator in Erewhon, a man name Higgs, is out exploring the undiscovered valleys of a thinly disguised New Zealand or some equivalent looking for a large virgin territory to raise sheep. In the process he discovers an unknown community, the nation of Erewhon hidden in its deep unexplored valleys. The people there are not primitive, but exist at roughly the level of a European village before the industrial revolution.  Or as Higgs observers of them in a quip pregnant with meaning – “…savages do not make bridges.” What they find most interesting about the newcomer Higgs is, of all things, his pocket watch.

But by and by they came to my watch which I had hidden away in the pocket that I had and had forgotten when began their search. They seemed concerned and the moment that they got hold of it. They made me open it and show the works and as as I had done so they gave signs of very grave which disturbed me all the more because I not conceive wherein it could have offended them.  (58)

One needs to know a little of the history of the idea of evolution to realize how deliciously clever this narrative use of a watch by Butler is. He’s jumping off of William Paley’s argument for intelligent design found in Paley’s 1802 Natural Theology or Evidences of the Existence and Attributes of the Deityabout which it has been said:

It is a book I greatly admire for in its own time the book succeeded in doing what I am struggling to do now. He had a point to make, he passionately believed in it, and he spared no effort to ram it home clearly. He had a proper reverence for the complexity of the living world, and saw that it demands a very special kind of explanation. (4)

 

The quote above is Richard Dawkins talking in his The Blind Watchmakerwhere he recovered and popularized Paley’s analogy of the stumbled upon watch as evidence that the stunningly complex world of life around us must have been designed.

Paley begins his Natural Theology with an imagined scenario where a complex machine, a watch, hitherto unknown by its discoverer leads to speculation about it origins.

In crossing a heath suppose I pitched my foot against a stone and were asked how the stone came to be there. I might possibly answer that for any thing I knew to the contrary it had lain there for ever nor would it perhaps be very easy to show the absurdity of this answer. But suppose I had found a watch upon the ground and it should be inquired how the watch happened to be in that place. I should hardly think of the answer which I had before given that for any thing I knew the watch might have always been there. Yet why should not this answer serve for the watch as well as for the stone? Why is it not as admissible in the second case as in the first?  (1)

After investigating the intricacies of the watch, how all of its pieces seem to fit together perfectly and have precise and definable functions Paley thinks that the:

….inference….is inevitable that the watch must have had a maker that there must have existed at some time and at some place or other an artificer or artificers who formed it for the purpose which we find it actually to answer who comprehended its construction and designed its use. (3-4)

Paley thinks we should infer a designer even if we discover the watch is capable of making copies of itself:

Contrivance must have had a contriver design a designer whether the machine immediately proceeded from another machine or not. (12)

This is creationism, but as even Dawkins admits, it is an eloquent and sophisticated creationism.

Darwin, which ever one got there first, overthrew this need for an engineer as the ultimate source of complexity by replacing a conscious designer with a simple process through which the most intricate of complex entities could emerge over time- in the younger’s case – Natural Selection.

 

The brilliance of Samuel Butler in Erewhon was to apply this evolutionary emergence of complexity not just to living things, but to the machines we believe ourselves to have engineered. Perhaps the better assumption to have when we encounter anything of sufficient complexity is that to reach such complexity it must have been something that evolved over time. Higgs says of the magistrate of Erewhon obsessed with the narrator’s pocket watch that he had:

….a look of horror and dismay… a look which conveyed to me the impression that he regarded my watch not as having been designed but rather as the designer of himself and of the universe or as at any rate one of the great first causes of all things  (58)

What Higgs soon discovers, however, is that:

….I had misinterpreted the expression on the magistrate’s face and that it was one not of fear but hatred.  (58)

Erewhon is a civilization where something like the Luddites of the early 19th century have won. The machines have been smashed, dismantled, turned into museum pieces.

Civilization has been reset back to the pre-industrial era, and the knowledge of how to get out of this era and back to the age of machines has been erased, education restructured to strangle in the cradle scientific curiosity and advancement.

All this happened in Erewhon because of a book. It is a book that looks precisely like an essay the real world Butler had published not long before his novel, his essay Darwin among the Machines, where George Dyson got his title. In Erewhon it is called simply “The Book of the Machines”.

It is sheer hubris we read in “The Book of the Machines” to think that evolution, having played itself out over so many billions of years in the past and likely to play itself out for even longer in the future, that we are the creatures who have reached the pinnacle. And why should we believe there could not be such a thing as “post-biological” forms of life:

…surely when we reflect upon the manifold phases of life and consciousness which have been evolved already it would be a rash thing to say that no others can be developed and that animal life is the end of all things. There was a time when fire was the end of all things another when rocks and water were so. (189)

In the “Book of the Machines” we see the same anxiety about the rapid progress of technology that we find in those warning of the existential dangers we might face within only the next several decades.

The more highly organised machines are creatures not so much of yesterday as of the last five minutes so to speak in comparison with past time. Assume for the sake of argument that conscious beings have existed for some twenty million years, see what strides machines have made in the last thousand. May not the world last twenty million years longer. If so what will they not in the end become?  (189-190)

Butler, even in the 1870’s is well aware of the amazing unconscious intelligence of evolution. The cleverest of species use other species for their own reproductive ends. The stars of this show are the flowers a world on display in Louie Schwartzberg’s stunning documentary Wings of Life which shows how much of the beauty of our world is the product of this bridging between species as a means of reproduction. Yet flowers are just the most visually prominent example.

Our machines might be said to be like flowers unable to reproduce on their own, but with an extremely effective reproductive vehicle in use through human beings. This, at least is what Butler speculated in Erewhon, again in the section “The Book of Machines”:

No one expects that all the features of the now existing organisations will be absolutely repeated in an entirely new class of life. The reproductive system of animals differs widely from that of plants but both are reproductive systems. Has nature exhausted her phases of this power? Surely if a machine is able to reproduce another machine systematically we may say that it has a reproductive system. What is a reproductive system if it be not a system for reproduction? And how few of the machines are there which have not been produced systematically by other machines? But it is man that makes them do so. Yes, but is it not insects that make many of the plants reproductive and would not whole families of plants die out if their fertilisation were not effected by a class of agents utterly foreign to themselves? Does any one say that the red clover has no reproductive system because the humble bee and the humble bee only must aid and abet it before it can reproduce? (204)

Reproduction is only one way one species or kingdom can use another. There is also their use as a survival vehicle itself. Our increasing understanding of the human microbiome almost leads one to wonder whether our whole biology and everything that has grown up around it has all this time merely been serving as an efficient vehicle for the real show – the millions of microbes living in our guts. Or, as Butler says in what is the most quoted section of Erewhon:

Who shall say that a man does see or hear? He is such a hive and swarm of parasites that it is doubtful whether his body is not more theirs than his and whether he is anything but another kind of ant heap after all. Might not man himself become a sort of parasite upon the machines. An affectionate machine tickling aphid. (196)

Yet, one might suggest that perhaps we shouldn’t separate ourselves from our machines. Perhaps we have always been transhuman in the sense that from our beginnings we have used our technology to extend our own reach. Butler well understood this argument that technology was an extension of the human self.

A machine is merely a supplementary limb this is the be all and end all of machinery We do not use our own limbs other than as machines and a leg is only a much better wooden leg than any one can manufacture. Observe a man digging with a spade his right forearm has become artificially lengthened and his hand has become a joint.

In fact machines are to be regarded as the mode of development by which human organism is now especially advancing every past invention being an addition to the resources of the human body. (219)

Even the Luddites of Erewhon understood that to lose all of our technology would be to lose our humanity, so intimately woven were our two fates. The solution to the dangers of a new and rival kingdom of animated beings arising from machines was to deliberately wind back the clock of technological development to before the time fossil fuels had freed machines from the constraints of animal, human, and cyclical power to before machines had become animate in the way life itself was animate.

Still, Butler knew it would be almost impossible to make the solution of Erewhon our solution. Given our numbers, to retreat from the world of machines would unleash death and anarchy such as the world has never seen:

The misery is that man has been blind so long already. In his reliance upon the use of steam he has been betrayed into increasing and multiplying. To withdraw steam power suddenly will not have the effect of reducing us to the state in which we were before its introduction there will be a general breakup and time of anarchy such as has never been known it will be as though our population were suddenly doubled with no additional means of feeding the increased number. The air we breathe is hardly more necessary for our animal life than the use of any machine on the strength of which we have increased our numbers is to our civilisation it is the machines which act upon man and make him man as much as man who has acted upon and made the machines but we must choose between the alternative of undergoing much present suffering or seeing ourselves gradually superseded by our own creatures till we rank no higher in comparison with them than the beasts of the field with ourselves. (215-216)

Therein lies the horns of our current dilemma. The one way we might save biological life from the risk of the new kingdom of machines would be to dismantle our creations and retreat from technological civilization. It is a choice we cannot make both because of its human toll and for the long term survival of the genealogy of earthly life. Butler understood the former, but did not grasp the latter. For, the only way the legacy of life on earth, a legacy that has lasted for 3 billion years, and which everything living on our world shares, will survive the inevitable life cycle of our sun which will boil away our planet’s life sustaining water in less than a billion years and consume the earth itself a few billion years after that, is for technological civilization to survive long enough to provide earthly life with a new home.

I am not usually one for giving humankind a large role to play in cosmic history, but there is at least a chance that something like Peter Ward’s Medea Hypothesis is correct, that given the thoughtless nature of evolution’s imperative to reproduce at all cost life ultimately destroys its own children like the murderous mother of Euripides play.

As Ward points out it is the bacteria that have almost destroyed life on earth, and more than once, by mindlessly transforming its atmosphere and poisoning it oceans. This is perhaps the risk behind us, that Bostrom thinks might explain our cosmic loneliness complex life never gets very far before bacteria kills it off. Still perhaps we might be in a sort of pincer of past and future our technological civilization, its capitalist economic system, and the AIs that might come to be at the apex of this world ultimately as absent of thought as bacteria and somehow the source of both biological life’s and its own destruction.     

Our luck has been to avoid a medea-ian fate in our past. If we can keeps our wits about us we might be able to avoid a  medea-ian fate in our future only this brought to us by the kingdom machines we have created. If most of life in the universe really has been trapped at the cellular level by something like the Medea Hypothesis, and we actually are able to survive over the long haul, then our cosmic task might be to purpose the kingdom of machines to be to spread and cultivate  higher order life as far as deeply as we can reach into space. Machines, intelligent or not, might be the interstellar pollinators of biological life. It is we the living who are the flowers.

The task we face over both the short and the long term is to somehow negotiate the rivalry not only of the two worlds that have dominated our existence so far- the natural world and the human world- but a third, an increasingly complex and distinct world of machines. Getting that task right is something that will require an enormous amount of wisdom on our part, but part of the trick might lie in treating machines in some way as we already, when approaching the question rightly, treat nature- containing its destructiveness, preserving its diversity and beauty, and harnessing its powers not just for the good of ourselves but for all of life and the future.

As I mentioned last time, the more sentient our machines become the more we will need to look to our own world, the world of human rights, and for animals similar to ourselves, animal rights, for guidance on how to treat our machines balancing these rights with the well being of our fellow human beings.

The nightmare scenario is that instead of carefully cultivating the emergence of the kingdom of machines to serve as a shelter for both biological life and those things we human beings most value they will instead continue to be tied to the dream of endless the endless accumulation of capital, or as Douglas Rushkoff recently stated it:

When you look at the marriage of Google and Kurzweil, what is that? It’s the marriage of digital technology’s infinite expansion with the idea that the market is somehow going to infinitely expand.

A point that was never better articulated or more nakedly expressed than by the imperialist business man Cecil Rhodes in the 19th century:

To think of these stars that you see overhead at night, these vast worlds which we can never reach. I would annex the planets if I could.

If that happens, a kingdom of machines freed from any dependence on biological life or any reflection of human values might eat the world of the living until the earth is nothing but a valley of our bones.

_____________________________________________________________________

That a whole new order of animated beings might emerge from what was essentially human weakness vis a-vis  other animals is yet another one of the universes wonders, but it is a wonder that needs to go right in order to make it a miracle, or even to prevent it merely from becoming a nightmare. Butler invented almost all of our questions in this regard and in speculating in Erewhon how humans might unravel their dependence on machines raised another interesting question as well; namely, whether the very freewill that we use to distinguish the human world from the worlds of animals or machines actually exists? He also pointed to an alternative future where the key event would not be the emergence of the kingdom of machines but the full harnessing and control of the powers of biological life by human beings questions I’ll look at sometime soon.

 

 

 

 

Our Verbot Moment

Metropolis poster

When I was around nine years old I got a robot for Christmas. I still remember calling my best friend Eric to let him know I’d hit pay dirt. My “Verbot” was to be my own personal R2D2. As was clear from the picture on the box, which I again remember as clear as if it were yesterday, Verbot would bring me drinks and snacks from the kitchen on command- no more pestering my sisters who responded with their damned claims of autonomy! Verbot would learn to recognize my voice and might help me with the math homework I hated. Being the only kid in my nowhere town with his very own robot I’d be the talk for miles in every direction. As long, that is, as Mark Z didn’t find his own Verbot under the tree- the boy who had everything- cursed brat!

Within a week after Christmas Verbot was dead. I never did learn how to program it to bring me snacks while I lounged watching Our Star Blazers, though it wasn’t really programmable to start with.  It was really more of a remote controlled car in the shape of Robbie from Lost in Space than an actual honest to goodness robot. Then as now, my steering skills weren’t so hot and I managed to somehow get Verbot’s antenna stuck in the tangly curls of our skittish terrier, Pepper. To the sounds of my cursing, Pepper panicked and drug poor Verbot round and around the kitchen table eventually snapping it loose from her hair to careen into a wall and smash into pieces. I felt my whole future was there in front of me in shattered on the floor. There was no taking it back.

Not that my 9 year old nerd self realized this, but the makers of Verbot obviously weren’t German, the word in that language meaning “to ban or prohibit”. Not exactly a ringing endorsement on a product, and more like an inside joke by the makers whose punch line was the precautionary principle.

What I had fallen into in my Verbot moment was the gap between our aspirations for  robots and their actual reality. People had been talking about animated tools since ancient times. Homer has some in his Iliad, Aristotle discussed their possibility. Perhaps we started thinking about this because living creature tend to be unruly and unpredictable. They don’t get you things when you want them to and have a tendency to run wild and go rogue. Tools are different, they always do what you want them to as long as they’re not broken and you are using them properly. Combining the animation and intelligence of living things with the cold functionality of tools would be the mixing of chocolate and peanut butter for someone who wanted to get something done without doing it himself. The problems is we had no idea how to get from our dead tools to “living” ones.

It was only in the 19th century that an alternative path to the hocus-pocus of magic was found for answering the two fundamental questions surrounding the creation of animate tools. The questions being what would animate these machines in the same way uncreated living beings were animated? and what would be the source of these beings intelligence? Few before the 1800s could see through these questions without some reference to black arts, although a genius like Leonardo Da Vinci had as far back as the 15th century seen hints that at least one way forward was to discover the principles of living things and apply them to our tools and devices. (More on that another time).

The path forward we actually discovered was through machines animated by chemical and electrical processes much like living beings are, rather than the tapping of kinetic forces such as water and wind or the potential energy and multiplication of force through things like springs and levers which had run our machines up until that point. Intelligence was to be had in the form of devices following the logic of some detailed set of instructions. Our animated machines were to be energetic like animals but also logical and precise like the devices and languages we had created for for measuring and sequencing.

We got the animation part down pretty quickly, but the intelligence part proved much harder. Although much more precise that fault prone humans, mechanical methods of intelligence were just too slow when compared to the electro-chemical processes of living brains. Once such “calculators”, what we now call computers, were able to use electronic processes they got much faster and the idea that we were on the verge of creating a truly artificial intelligence began to take hold.

As everyone knows, we were way too premature in our aspirations. The most infamous quote of our hubris came in 1956 when the Dartmouth Summer Research Project on Artificial Intelligence boldly predicted:

We propose that a 2 month, 10 man study of artificial intelligence be carried out during the summer of 1956 at Dartmouth College in Hanover, New Hampshire. The study is to proceed on the basis of the conjecture that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it. An attempt will be made to find how to make machines use language, form abstractions and concepts, solve kinds of problems now reserved for humans, and improve themselves. We think that a significant advance can be made in one or more of these problems if a carefully selected group of scientists work on it together for a summer.[emphasis added]

Ooops. Over much of the next half century, the only real progress in these areas for artificial intelligence came in the worlds we’d dreamed up in our heads. As a young boy, the robots I saw using language or forming abstractions were only found in movies and TV shows such as 2001: A Space Odyssey, or Star Wars, Battlestar Galactica, Buck Rogers and in books by science-fiction giants like Asimov. Some of these daydreams were so long in being unfulfilled I watched them in black and white. Given this, I am sure many other kids had their Verbot moments as well.

It is only in the last decade or so when the processing of instructions has proven fast enough and the programs sophisticated enough for machines to exhibit something like the intelligent behaviors of living organisms. We seem to be at the beginning of a robotic revolution where machines are doing at least some of the things science-fiction and Hollywood had promised. They beat us at chess and trivia games, can drive airplanes and automobiles, serve as pack animals, and even speak to us. How close we will come to the dreams of authors and filmmakers when it comes to our 21st century robots can not be known, though, an even more important question would be how what actually develops diverges from these fantasies?

I find the timing of this robotic revolution in the context of other historical currents quite strange. The bizarre thing being that almost at the exact moment many of us became unwilling to treat other living creatures, especially human beings, as mere tools, with slavery no longer tolerated, our children and spouses no longer treated as property and servants but gifts to be cultivated, (perhaps the sadder element of why population growth rates are declining), and even our animals offered some semblance of rights and autonomy, we were coming ever closer to our dream of creating truly animated and intelligent slaves.

This is not to say we are out of the woods yet when it comes to our treatment of living beings. The headlines of the tragic kidnapping of over 300 girls in Nigeria should bring to our attention the reality of slavery in our supposedly advanced and humane 21st century with there being more people enslaved today than at the height of 19th century chattel slavery. It’s just the proportions that are so much lower. Many of the world’s working poor, especially in the developing world, live in conditions not far removed from slavery or serfdom. The primary problem I see with our continued practice of eating animals is not meat eating itself, but that the production processes chains living creatures to the cruel and unrelenting sequence of machines rather than allowing such animals to live in the natural cycles for which they evolved and were bred.

Still, people in many parts of the world are rightly constrained in how they can treat living beings. What I am afraid of is dark and perpetual longings to be served and to dominate in humans will manifest themselves in our making machines more like persons for those purposes alone.  The danger here is that these animated tools will cross, or we will force them to cross, some threshold of sensibility that calls into question their very treatment and use as mere tools while we fail to mature beyond the level of my 9 year old self dreaming of his Verbot slave.

And yet, this is only one way to look at the rise of intelligent machines. Like a gestalt drawing we might change our focus and see a very different picture- that it is not we who are using and chaining machines for our purposes, but the machines who are doing this to us.  To that subject next time…

 

 

 

Why does the world exist, and other dangerous questions for insomniacs

William Blake Creation of the World

 

A few weeks back I wrote a post on how the recent discovery of gravitational lensing provided evidence for inflationary models of the Big Bang. These are cosmological models that imply some version of the multiverse, essentially the idea that ours is just one of a series of universes, a tiny bubble, or region, of a much, much larger universe where perhaps even the laws of physics or rationality of mathematics differed from one region to another.

My earlier piece had taken some umbrage with the physicist Lawrence Krauss’ new atheist take on the discovery of gravitational lensing, in the New Yorker. Krauss is a “nothing theorists”, one of a group of physicists who argue that the universe emerged from what in effect was nothing at all, although; unlike other nothing theorists such as Stephen Hawking, Krauss uses his science as a cudgel to beat up on contemporary religion. It was this attack on religion I was interested in, while the deeper issue the issue of a universe arising from nothing, left me shrugging my shoulders as if there was, excuse the pun, nothing of much importance in the assertion.

Perhaps I missed the heart of the issue because I am a nothingist myself, or at the very least, never found the issue of nothingness something worth grappling with.  It’s hard to write this without sounding like a zen koan or making my head hurt, but I didn’t look into the physics or the metaphysics of Krauss’ nothingingist take on gravitational lensing, inflation or anything else, in fact I don’t think I had ever really reflected on the nature of nothing at all.

The problems I had with Krauss’ overall view as seen in his book on the same subject A Universe from Nothing had to do with his understanding of the future and the present not the past.  I felt the book read the future far too pessimistically, missing the fact that just because the universe would end in nothing there was a lot of living to be done from now to the hundreds of billions of years before its heat death. As much as it was a work of popular science, Krauss’ book was mostly an atheist weapon in what I called “The Great God Debate” which, to my lights, was about attacking, or for creationists defending, a version of God as a cosmic engineer that was born no earlier and in conjunction with modern science itself. I felt it was about time we got beyond this conception of God and moved to a newer or even more ancient one.

Above all, A Universe from Nothing, as I saw it, was epistemologically hubristic, using science to make a non-scientific claim over the meaning of existence- that there wasn’t any- which cut off before they even got off the ground so many other interesting avenues of thought. What I hadn’t thought about was the issue of emergence from nothingness itself. Maybe the question of the past, the question of why our universe was here at all, was more important than I thought.

When thinking a question through, I always find a helpful first step to turn to the history of ideas to give me some context. Like much else, the idea that the universe began from nothing is a relatively recent one. The ancients had little notion of nothingness with their creation myths starring not with nothing but most often an eternally existing chaos that some divinity or divinities sculpted into the ordered world we see. You start to get ideas of creation out of nothing- ex nihilo- really only with Augustine in the 5th century, but full credit for the idea of a world that began with nothing would have to wait until Leibniz in the 1600s, who, when he wasn’t dreaming up new cosmologies was off independently inventing calculus at the same time as Newton and designing computers three centuries before any of us had lost a year playing Farmville.

Even when it came to nothingness Leibniz was ahead of his time. Again about three centuries after he had imagined a universe created from nothing the renegade Einstein was just reflecting universally held opinion when he made his biggest “mistake” tweaking his theory of general relativity with what he thought was a bogus cosmological constant so that he could get a universe that he and everyone else believed in- a universe that was eternal and unchanging- uncreated. Not long after Einstein had cooked the books Edwin Hubble discovered the universe was changing with time, moving apart, and not long after the that, evidence mounted that the universe had a beginning in the Big Bang.

With a creation event in the Big Bang cosmologists, philosophers and theologians were forced to confront the existence of a universe emerging from what was potentially nothing running into questions that had lain dormant since Leibniz- how did the universe emerge from nothing? why this particular universe? and ultimately why something rather than nothing at all? Krauss thinks we have solved the first and second questions and finds the third question, in his words, “stupid”.

Strange as it sounds coming out of my mouth, I actually find myself agreeing with Krauss: explanations that the universe emerged from fluctuations in a primordial “quantum foam” – closer to the ancient’s idea of chaos than our version of nothing- along with the idea that we are just one of many universes that follow varied natural laws- some like ours capable of fostering intelligent life- seem sufficient to me.  The third question, however, I find in no sense stupid, and if it’s childlike, it is childlike in the best wondrously curious kind of way. Indeed, the answers to the question “why is there something rather than nothing?” might result is some of the most thrilling ideas human beings have come up with yet.

The question of why there is something rather than nothing is brilliantly explored in a book by Jim Holt Why the World Exist?: An Existential Detective Story. As Holt points out, the problem with nothingists theories like those of Krauss is that they fail to answer  the question as to why the quantum foam or multiple universes churning out their versions of existence are there in the first place. The simplest explanation we have is that “God made it”, and Holt does look at this answer as provided by philosopher of religion Richard Swinburne who answers the obvious question “who made God?” with the traditional answer “God is eternal and not made” which makes one wonder why we can’t just stick with Krauss’ self-generating universe in the first place?

Yet, it’s not only religious persons who think the why question is addressing something fundamental or even that science reveals the question as important even if we are forever barred from completely answering it. As physicist David Deutsch says in Why does the world exist:

 … none of our laws of physics can possibly answer the question of why the multiverse is there…. Laws don’t do that kind of work.

Wheeler used to say, take all the best laws of physics and put those bits on a piece of paper on the floor. Then stand back and look at them and say, “Fly!” They won’t fly they just sit there. Quantum theory may explain why the Big Bang happened, but it can’t answer the question you’re interested in, the question of existence. The very concept of existence is a complex one that needs to be unpacked. And the question Why is there something rather than nothing is a layered one, I expect. Even if you succeeded in answering it at some level, you’d still have the next level to worry about.  (128)

Holt quotes Deutsch from his book The Fabric of Reality “I do not believe that we are now, or shall ever be, close to understanding everything there is”. (129)

Others, philosophers and physicists are trying to answer the “why” question by composing solutions that combine ancient and modern elements. These are the Platonic multiverses of John Leslie and Max Tegmark both of whom, though in different ways, believe in eternally existing “forms”, goodness in the case of Leslie and mathematics in the case of Tegmark, which an infinity of universes express and realize. For the philosopher Leslie:

 … what the cosmos consists of is an infinite number of infinite minds, each of which knows absolutely everything which is worth knowing. (200)

Leslie borrows from Plato the idea that the world appeared out of the sheer ethical requirement for Goodness, that “the form of the Good bestows existence upon the world” (199).

If that leaves you scratching your scientifically skeptical head as much as it does mine, there are actual scientists, in this case the cosmologist Max Tegmark who hold similar Platonic ideas. According to Holt, Tegmark believes that:

 … every consistently desirable mathematical structure exists in a genuine physical sense. Each of these structures constitute a parallel world, and together these parallel worlds make up a mathematical multiverse. 182

Like Leslie, Tegmark looks to Plato’s Eternal Forms:

 The elements of this multiverse do not exist in the same space but exist outside space and time they are “static sculptures” that represent the mathematical structure of the physical laws that govern them.  183

If you like this line of reasoning, Tegmark has a whole book on the subject, Our Mathematical Universe. I am no Platonist and Tegmark is unlikely to convert me, but I am eager to read it. What I find most surprising about the ideas of both Leslie and Tegmark is that they combine two things I did not previously see as capable of being combined ,or even considered outright rival models of the world- an idea of an eternal Platonic world behind existence and the prolific features of multiverse theory in which there are many, perhaps infinite varieties of universes.

The idea that the universe is mind bogglingly prolific in its scale and diversity is the “fecundity” of the philosopher Robert Nozick who until Holt I had only associated with libertarian economics. Anyone who has a vision of a universe so prolific and diverse is okay in my book, though I do wish the late Nozick had been as open to the diversity of human socio-economic systems as he had been to the diversity of universes.

Like the physicist Paul Davies, or even better to my lights the novelists John Updike, both discussed by Holt, I had previously thought the idea of the multiverse was a way to avoid the need for either a creator God or eternally existing laws- although, unlike Davies and Updike and in the spirit of Ockham’s Razor I thought this a good thing. The one problem I had with multiverse theories was the idea of not just a very large or even infinite number of alternative universes but parallel universes where there are other versions of me running around, Holt managed to clear that up for me.

The idea that the universe was splitting every time I chose to eat or not eat a chocolate bar or some such always struck me as silly and also somehow suffocating. Hints that we may live in a parallel universe of this sort are just one of the weird phenomenon that emerge from quantum mechanics, you know, poor Schrodinger’s Cat . Holt points out that this is much different and not connected to the idea of multiple universes that emerge from the cosmological theory of inflation. We simply don’t know if these two ideas have any connection. Whew! I can now let others wrestle with the bizarre world of the quantum and rest comforted that the minutiae of my every decision doesn’t make me responsible for creating a whole other universe.

This returning to Plato seen in Leslie and Tegmark, a philosopher who died, after all,  2,5000 years ago, struck me as both weird and incredibly interesting. Stepping back, it seems to me that it’s not so much that we’re in the middle of some Hegelian dialectic relentlessly moving forward through thesis-antithesis-synthesis, but more involved in a very long conversation that is moving in no particular direction and every so often will loop back upon itself and bring up issues and perspectives we had long left behind.  It’s like a maze where you have to backtrack to the point you made a wrong turn in order to go in the right direction. We can seemingly escape the cosmological dead end created by Christian theology and Leibniz’s idea of creation ex nihilo only by going back to ideas found before we went down that path, to Plato. Though, for my money, I even better prefer another ancient philosopher- Lucretius.

Yet, maybe Plato isn’t back quite far enough. It was the pre-socratics who invented the natural philosophy that eventually became science. There is a kind of playfulness to their ideas all of which could exist side-by-side in dialogue and debate with one another with no clear way for any theory to win. Theories such as Heraclitus: world as flux and fire, or Pythagoras: world as number, or Democritus: world as atoms.

My hope is that we recognize our contemporary versions of these theories for what they are “just-so” stories that we tell about the darkness beyond the edge of scientific knowledge- and the darkness is vast. They are versions of a speculative theology- the possibilism of David Eagleman, which I have written about before and which are harmful only when they become as rigid and inflexible as the old school theology they are meant to replace or falsely claim the kinds of proof from evidence that only science and its experimental verification can afford. We should be playful with them, in the way Plato himself was playful with such stories in the knowledge that while we are in the “cave” we can only find the truth by looking through the darkness at varied angles.

Does Holt think there is a reason the world exists? What is really being asked here is what type of, in the philosopher Derek Parfit’s term “selector” brought existence into being. For Swinburne  the selector was God, for Leslie Goodness, Tegmark mathematics, Nozik fullness, but Holt thinks the selector might have been more simple, indeed, that the selector was simplicity. All the other selectors Holt finds to be circular, ultimately ending up being used to explain themselves. But what if our world is merely the simplest one possible that is also full? Moving from reason alone Holt adopts something like the mid-point between a universe that contained nothing and one that contained an infinite number of universes that are perfectly good adopting a mean he calls  “infinite mediocrity.”

I was not quite convinced by Holt’s conclusion, and was more intrigued by the open-ended and ambiguous quality of his exploration of the question of why there is something rather than nothing than I was his “proof” that our existence could be explained in such a way.

What has often strikes me as deplorable when it comes to theists and atheists alike is their lack of awe at the mysterious majesty of it all. That “God made it” or “it just is” strikes me flat. Whenever I have the peace in a busy world to reflect it is not nothingness that hits me but the awe –That the world is here, that I am here, that you are here, a fact that is a statistical miracle of sorts – a web weaving itself. Holt gave me a whole new way to think about this wonder.

How wonderfully strange that our small and isolated minds leverage cosmic history and reality to reflect the universe back upon itself, that our universe might come into existence and disappear much like we do. On that score, of all the sections in Holt’s beautiful little book it was the most personal section on the death of his mother that taught me the most about nothingness. Reflecting on the memory of being at his mother’s bedside in hospice he writes:

My mother’s breathing was getting shallower. Her eyes remained closed. She still looked peaceful, although every once in a while she made a little gasping noise.

Then I was standing over her, still holding her hand, my mother’s eyes open wide, as if in alarm. It was the first time I had seen them that day. She seemed to be looking at me. She opened her mouth. I saw her tongue twitch two or three times. Was she trying to say something? Within a couple of seconds her breathing stopped.

I leaned down and told her I loved her. Then I went into the hall and said to the nurse. “I think she just died.” (272-273)

The scene struck me as the exact opposite of the joyous experience I had at the birth of my own children and somehow reminded me of a scene from Diane Ackerman’s book Deep Play.

 The moment a new-born opens its eyes discovery begins. I learned this with a laugh one morning in New Mexico where I worked through the seasons of a large cattle ranch. One day, I delivered a calf. When it lifted up its fluffy head and looked at me its eyes held the absolute bewilderment of the newly born. A moment before it had enjoyed the even, black  nowhere of the womb and suddenly its world was full of color, movement and noise. I’ve never seen anything so shocked to be alive. (141-142)

At the end of the day, for the whole of existence, the question of why there is something rather than nothing may remain forever outside our reach, but we, the dead who have become the living and the living who will become the dead, are certainly intimates with the reality of being and nothingness.